Probabilité

I. Espace probabilisé

1) Espace probabilisable (théorique). Cas général : Ω peut être infini non dénombrable

<u>Idée</u>: Ω est l'univers, c'est à dire l'ensemble de tous les résultats possibles d'une expérience aléatoire. On veut probabiliser Ω en définissant $P(A) \in [0,1]$ pour certains $A \subset \Omega$. Pour des raisons profondes, il n'est en général pas possible de définir P(A) pour toute partie de Ω . On se restreint à une classe raisonnable d'événements appelée **tribu**.

Le cas le plus fréquent : si Ω est dénombrable, on pourra prendre comme tribu $\mathcal{P}(\Omega)$.

<u>Définition</u>:

Soit Ω un ensemble quelconque (fini ou infini).

Une tribu sur Ω est un ensemble \mathcal{A} de parties de Ω (c'est à dire $\mathcal{A} \subset \mathcal{P}(\Omega)$) telle que :

i) $\Omega \in \mathcal{A}$

ii) Si $A \in \mathcal{A}$, alors on a : $\overline{A} = \Omega \backslash A \in \mathcal{A}$

iii) Si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathcal{A} , alors on a : $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{A}$.

Les éléments de \mathcal{A} sont appelés les évènements.

On dit que (Ω, \mathcal{A}) est un espace probabilisable.

Théorème:

Soit (Ω, \mathcal{A}) un espace probabilisable, alors on a :

1) $\emptyset \in \mathcal{A}$

2) Soit $(A_n)_{n\in\mathbb{N}}$, une suite de \mathcal{A} , alors on a : $\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}$.

3) Soient $n \in \mathbb{N}^*$ et $(A_1, A_2, \dots, A_n) \in \mathcal{A}^n$, alors on a : $A_1 \cup A_2 \cup \dots \cup A_n \in \mathcal{A}$ et $A_1 \cap A_2 \cap \dots \cap A_n \in \mathcal{A}$.

4) Soit $(A, B) \in \mathcal{A}^2$, alors $A \setminus B \in \mathcal{A}$.

Exemple:

- a) $\mathcal{A} = \mathcal{P}(\Omega)$ est une tribu sur Ω .
- b) $\mathcal{A} = \{\emptyset, \Omega\}$ est une tribu sur Ω (on l'appelle tribu triviale).
- c) Soit $A \subset \Omega$, déterminer la plus petite tribu contenant A.
- d)* Soit $(A_n)_{n\in\mathbb{N}}$ une suites d'évènements d'un espace probabilisable (Ω, \mathcal{A}) . Montrer que l'ensemble B des éléments de Ω qui appartiennent à une infinité d'évènements A_n est un évènement de (Ω, \mathcal{A}) .

On pourra remarquer que : si $X_{\omega} = \{k \in \mathbb{N} | \omega \in A_k\}$, alors $[X_{\omega} \text{ est infini} \iff \forall n \in \mathbb{N}, \exists k \geq n/k \in X_{\omega}]$

<u>Définition</u>:

Soit (Ω, \mathcal{A}) un espace probabilisable, et soit $I \subset \mathbb{N}$.

On appelle système complet d'évènements, une famille $(A_i)_{i\in I}$ où les $A_i\in\mathcal{A}$ qui vérifie :

• $\Omega = \bigcup_{i \in I} A_i$ et • $\forall (i,j) \in I^2 : i \neq j \Longrightarrow A_i \cap A_j = \emptyset$ (on dit que les $(A_i)_{i \in I}$ sont incompatibles).

Cas particulier important:

Soit $A \in \mathcal{A}$, alors (A, \overline{A}) est un S.C.E. (système complet d'évènements)

2) Espace probabilisé:

<u>Définition</u> : (le plus souvent, la tribu est $\mathcal{P}(\Omega)$)

Une probabilité sur l'espace probabilisable $(\Omega,\mathcal{A}),$ est une

application ${\bf P}$ définie sur ${\cal A}$ et à valeurs dans [0,1] telle que :

- i) $\mathbf{P}(\Omega) = 1$
- ii) propriété de $\underline{\sigma\text{-additivit\'e}}$: Si $(A_n)_{n\in\mathbb{I}\mathbb{N}}$ est une suite d'évènements 2 à 2 incompatibles de \mathcal{A} , alors on a :

la série
$$\left(\sum \mathbf{P}(A_n)\right)_{n\in\mathbb{N}}$$
 converge et $\mathbf{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n=0}^{+\infty}\mathbf{P}(A_n)$

On dit alors que $(\Omega, \mathcal{A}, \mathbf{P})$ est un espace **probabilisé**.

Remarque : Par la suite, on dira que 2 événements sont disjoints ou incompatibles.

Propriétés :

Soit $(\Omega, \mathcal{A}, \mathbf{P})$, un espace probabilisé, alors on a :

- 1) $\mathbf{P}(\emptyset) = 0$.
- 2) Soit $(A_1, A_2, \dots, A_n) \in \mathcal{A}^n$ $(n \ge 1)$, 2 à 2 disjoints, alors on a :

$$\mathbf{P}(A_1 \cup A_2 \cup \dots \cup A_n) = \mathbf{P}(A_1) + \dots + \mathbf{P}(A_n).$$

3) **Monotonie**: Soit $(A, B) \in A^2$ tel que $A \subset B$, alors on a : $\mathbf{P}(A) \leq \mathbf{P}(B)$ et

$$\mathbf{P}(B \setminus A) = \mathbf{P}(B) - \mathbf{P}(A)$$
. En particulier $\mathbf{P}(\overline{A}) = 1 - \mathbf{P}(A)$

- 4) Soient $(A, B) \in \mathcal{A}^2$, quelconques, alors on a : $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$.
- 5) <u>continuité croissante</u> :

Soit $(A_n)_{n\in\mathbb{N}}$, une suite croissante d'évènements de \mathcal{A} (i.e. $A_n\subset A_{n+1}$ pour tout n dans \mathbb{N}),

alors on a :
$$\mathbf{P}\left(\bigcup_{n\in\mathbb{I}\mathbb{N}}A_n\right) = \lim_{n\to+\infty}\mathbf{P}(A_n).$$

6) continuité décroissante :

Soit $(A_n)_{n\in\mathbb{N}}$, une suite décroissante d'évènements de \mathcal{A} (i.e. $A_{n+1}\subset A_n$ pour tout n dans \mathbb{N}),

alors on a :
$$\mathbf{P}\left(\bigcap_{n\in\mathbb{I}\mathbb{N}}A_n\right) = \lim_{n\to+\infty}\mathbf{P}(A_n).$$

7) sous-additivité (ou inégalité de Boole) :

Soit $(A_n)_{n\in\mathbb{N}}$, une suite quelconque d'évènements de $\mathcal A$, alors on a :

$$\mathbf{P}\left(\bigcup_{n\in\mathbb{N}}A_n\right)\leqslant\sum_{n=0}^{+\infty}\mathbf{P}(A_n) \text{ (la somme de droite étant éventuellement infinie)}$$

<u>Remarque</u> : en proba, si $\sum \mathbf{P}(A_n)$ diverge, on dit que $\sum_{n=0}^{+\infty} \mathbf{P}(A_n) = +\infty$.

<u>Remarque 2</u> : cas particulier de la propriété 7 : si $(A_1,A_2,\ldots,A_n)\in\mathcal{A}^n$ $(n\geqslant 1),$ on a :

$$\mathbf{P}(A_1 \cup A_2 \cup \cdots \cup A_n) \leqslant \mathbf{P}(A_1) + \cdots + \mathbf{P}(A_n).$$

<u>Définition</u> : 2 évènements A et B sont indépendants si $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$.

Probabilité, suite

- 3) Conditionnement : $(\Omega, \mathcal{A}, \mathbf{P})$ est un espace probabilisé
- \bullet Définition d'une proba conditionnelle :

si
$$P(B) \neq 0$$
, alors $P(A/B) = \frac{P(A \cap B)}{P(B)}$ (notée aussi $P_B(A)$).

 $\underline{\mathbf{thm}}:P_{B}$ est une probabilité.

 $\mathbf{Cons\'equence}: P(\overline{A}/B) = \dots$

Propriété : Si $P(B) \neq 0$ alors : [A et B sont indépendants $\iff P(A/B) = P(A)$]

Formule des proba composées : Si $P(A_1 \cap A_2 \cap ... \cap A_{n-1}) \neq 0$, alors

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2/A_1)P(.... ...P(A_n/A_1 \cap A_2 \cap ... \cap A_{n-1})$$

Formule des proba totales : $I \subset \mathbb{N}$.

Si $(A_i)_{i\in I}$ est un système complet d'évènements, alors pour tout évènement B,

1ère forme : $P(B) = \sum_{i \in I} P(A_i \cap B)$

(pour les lois marginales de couple)

2ème forme : $P(B) = \sum_{i \in I} P(A_i) P(B/A_i)$

avec pour convention, si $P(A_i) = 0$, $P(A_i)P(B/A_i) = 0$.

<u>Application</u>: Soit A un évènement, alors (A, \overline{A}) est un système complet d'événements et la formule des

proba totales s'écrit :

Formule de Bayes : (la formule à remonter dans le temps)

Si
$$P(A) \neq 0$$
 et $P(B) \neq 0$, alors $P(A/B) = \frac{P(A)}{P(B)}P(...$

II. Variables aléatoires :

Soit (Ω, \mathcal{A}, P) , un espace probabilisé et E un ensemble quelconque non vide. (en général, $E = \mathbb{R}$).

1) Généralités :

Définition:

On appelle <u>variable aléatoire discrète</u> (VAD) sur (Ω, \mathcal{A}, P) toute application $X : \Omega \longrightarrow E$ vérifiant :

- i) L'image $X(\Omega)$ est une partie au plus dénombrable de E (: finie ou dénombrable).
- ii) Pour tout $x \in E$, l'ensemble $X^{-1}(\{x\}) \in \mathcal{A}$ (c'est à dire $X^{-1}(\{x\})$ est un événement).

Remarques:

* Si X est une **VAD** et $x \notin X(\Omega)$, alors, $X^{-1}(\{x\}) = \emptyset$ est toujours dans \mathcal{A} .

On en déduit que le point ii) de la Définition est équivalent à : Pour tout $x \in X(\Omega)$, $X^{-1}(\{x\}) \in \mathcal{A}$.

* Si $E={\rm I\!R},\,X$ est une variable aléatoire réelle discrète (VARD).

Rappel:
$$X^{-1}(B) = \dots$$
 et $X^{-1}(\{x\}) = \dots$

Notations: En probabilité, on accepte d'alléger les notations ensemblistes habituelles, notamment pour les

images réciproques : si $X:\Omega\longrightarrow E$ est une variable aléatoire discrète, et

si $B \subset E$, on notera : $X^{-1}(B) = (X \in B)$ et si $x \in E$, on notera : $X^{-1}(\{x\}) = (X = x)$

Exemple de ce paragraphe : On lance une pièce 2 fois, alors $\Omega = \dots$

Sur $(\Omega, \mathcal{P}(\Omega))$, on définit $X: \Omega \longrightarrow \mathbb{R}$

 $\omega \longmapsto$ le nombre de piles de ω .

Dans la pratique, on définit X par : X = le nombre de piles obtenus (ou $X(\omega) = \text{le nombre de piles obtenus}$).

On a alors $X(\Omega) = \dots$

et l'événement (X = 1) = ...

(X = 0, X = 1, X = 2) est ...

<u>Rem</u>: on note aussi $(P, F) = P_1 \cap F_2$ (ou encore P_1F_2)

Propriété 1 :

Soit $X: \Omega \longrightarrow E$ une **VAD** sur (Ω, \mathcal{A}) , on peut donc noter $X(\Omega) = \{x_n , n \in I\}$, avec $I \subset \mathbb{N}$.

Alors $\{(X = x_n)_{n \in I}\}$ est un système complet d'évènements.

Autres exemples:

- a) On lance un dé jusqu'à l'obtention d'un 4 et on s'intéresse à la variable Y qui compte le nombre de lancers nécessaires pour obtenir le premier 4. Que vaut $Y(\Omega)$?
- b) On lance deux dés, alors $\Omega = \{1, 2, 3, 4, 5, 6\}^2$, et Z définie par Z((i, j)) = i + j est une variable aléatoire , on dira que Z est la somme des résultats des 2 dés, et on note $Z=\dots$ discrète et $Z(\Omega) = \dots$

Propriété 2 :

Soient X et Y 2 **VARD** sur (Ω, A) , alors X + Y, XY, $\max(X, Y)$, $\min(X, Y)$ sont des **VARD**.

<u>Définition</u> de la fonction indicatrice de $A \in \mathcal{P}(\Omega)$, on note $\mathbb{1}_A : \Omega \longrightarrow \mathbb{R}$

$$\omega \longmapsto 1 \text{ si } \omega \in A$$

$$\omega \longmapsto 0 \text{ si } \omega \notin A.$$

 1_A est appelée la fonction indicatrice de A: c'est une VAD, et on a $1_A(\Omega) = ...$

$$\forall x \in \mathbb{R}, \quad \mathbf{1} \mathbb{I}_A^{-1}(\{x\}) = \emptyset \text{ si } \dots$$

$$\mathbf{1}\!\!\mathbf{1}_A^{-1}(\{1\}) = ...$$

$$1\!\!1_A^{-1}(\{1\}) = \dots \qquad \qquad \text{et } 1\!\!1_A^{-1}(\{0\}) = \dots$$

Définition de la loi de probabilité d'une variable aléatoire discrète

Soit X une VAD sur $(\Omega, \mathcal{A}, \mathbf{P})$ un espace probabilisé.

La loi de probabilité de X est la donnée de :

- $X(\Omega)$, de la forme $\{x_n/n \in I\}$ où $I \subset \mathbb{N}$
- et de $\mathbf{P}(X = x_n)$ pour tout $x_n \in X(\Omega)$

Remarque:
$$\forall n \in I$$
, $\mathbf{P}(X = x_n) \ge 0$ et $\sum_{n \in I} \mathbf{P}(X = x_n) = 1$.

Exemple de ce paragraphe :

On lance une pièce 2 fois, et X = le nombre de piles obtenus. Déterminer la loi de X:

Propriété : (admise)

Soit $X:\Omega\longrightarrow E$ une **VAD** sur l'espace probabilisable (Ω,\mathcal{A}) . On pose $X(\Omega)=\{x_n\ , n\in I\}$, avec $I\subset\mathbb{N}$.

Soit $(p_n)_{n\in I}$ une suite de réels positifs vérifiant $\sum p_n=1$.

Alors il existe une probabilité \mathbf{P} sur (Ω, \mathcal{A}) telle que, pour tout $n \in I$, $\mathbf{P}(X = x_n) = p_n$.

Définition

2 VAD X et Y sont indépendantes si

 $\forall x \in X(\Omega), \forall y \in Y(\Omega), (X = x) \text{ et } (Y = y) \text{ sont indépendantes (c'est à dire : ...}$

Probabilité, fin

Propriétés (admises) :

Si X et Y sont indépendantes alors :

- $\forall A \subset X(\Omega), \ \forall B \subset Y(\Omega), \ \mathbf{P}(X \in A \text{ et } Y \in B) = \mathbf{P}(X \in A)\mathbf{P}(Y \in B)$
- \bullet Toute fonction de X est indépendantes de toute fonction de Y.

Exemples:

- 1. Si X et Y sont indépendantes, on obtient $P(X \le x \text{ et } Y \le y) = ...$
- 2. Si X et Y sont indépendantes alors X^2 et e^Y sont indépendantes.

Quelques méthodes à connaitre :

- max $(X,Y) \le x \iff X \le x \text{ et } Y \le x \text{ (inégalité large ou stricte)}$
- $\min (X, Y) \ge x \iff X \ge x \text{ et } Y \ge x$
- Si $X(\Omega) = Y(\Omega) \subset \mathbb{N}$, alors (X = Y) = (X = 0 et Y = 0) ou (X = 1 et Y = 1) ou

$$(X = Y) = \bigcup_{k \in \mathbb{I}\mathbb{N}} ((X = k) \cap (Y = k))$$

Propriété : Si $X(\Omega) \subset \mathbb{Z}$, alors $\mathbf{P}(X = k) = \mathbf{P}(X \leqslant k) - \mathbf{P}(X \leqslant k - 1)$.

- 2) Lois classiques:
- 1. Loi uniforme sur [1, n]:

$$X \sim U(\llbracket 1, n \rrbracket)$$
 si $X(\Omega) = \dots$ et $P(X = k) = \dots$

et
$$P(X = k) = ...$$

$$E(X) = \dots$$
 et $V(X) =$

2. Loi de Bernoulli de paramètre $p \in]0,1[]$: une épreuve de Bernoulli a 2 issus possibles : succès et

échec (le succès correspondant à (X = 1))

$$X \sim B(p)$$
 si $X(\Omega) = \dots$ et
$$\begin{cases} P(X = 0) = \dots \\ P(X = 1) = \dots \end{cases}$$

$$E(X) = \dots$$
 et $V(X) =$

3. Loi binomiale de paramètres $n \ge 1$ et $p \in]0,1[\,]$:

Modèle : nombre de succès lors de n épreuves de Bernoulli indépendantes de paramètre p.

$$X \sim B(n, p)$$
 si $X(\Omega) = \dots$

et
$$P(X = k) = ...$$

$$E(X) = \dots$$
 et $V(X) =$

4. Loi géométrique de paramètre $p \in]0,1[$:

 $\mathbf{Modèle}$: rang du premier succès lors d'une suite d'épreuves de Bernoulli indépendantes de paramètre p.

$$X \sim \mathcal{G}(p) \text{ si } X(\Omega) = \dots$$
 et $P(X = k) = \dots$.

$$E(X) = \dots$$
 et $V(X) = \dots$

5. Loi de Poisson de paramètre $\lambda > 0$:

$$X \sim \mathcal{P}(\lambda)$$
 si $X(\Omega) = \dots$ et $P(X = k) = \dots$

et
$$P(X = k) = ...$$

$$E(X) = V(X) = \dots$$

- 3) Espérance : en classe
- 4) Paramètres de dispersion : en classe